extinction coefficient¹¹ for [Co(aben)Cl(py)] is independent of pressure, the concentration of the five-coordinate species [Co-(aben)Cl] is found to be 7.7% at atmospheric pressure, being larger than the previous value of 4%.^{3c} Moreover, the thermodynamic parameters for the equilibrium (1) are calculated with [py] =12.41 M as follows: $K = 0.96 \text{ M}^{-1}$, $\Delta G = 0.099 \text{ kJ mol}^{-1}$, and $\Delta S = -0.18 \text{ kJ mol}^{-1} \text{ K}^{-1}$.

Acknowledgment. We thank Y. Yoshida for technical assistance. This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan (No. 59470038).

Registry No. py, 110-86-1; [Co(aben)Cl], 36433-98-4.

(11) The molar extinction coefficients are estimated to be 4290 M⁻¹ cm⁻¹ at 21 500 cm⁻¹ for [Co(aben)Cl(py)] and 3450 M⁻¹ cm⁻¹ at 12 300 cm⁻¹ for [Co(aben)Cl].

> Contribution from the Department of Chemistry, University College, University of New South Wales, Australian Defence Force Academy, Northcott Drive, Campbell, ACT, Australia 2600

Amination of Coordinated Nitriles: Synthesis of Metal **Complexes of Amidines and Guanidines**

David P. Fairlie and W. Gregory Jackson*

Received October 7, 1988

Coordination by nitriles to electron-withdrawing metal ions results in considerable enhancement in the electrophilicity of the nitrile carbon center. This is demonstrated¹ by the 10⁶-10⁸-fold increase in the rate of base-catalyzed hydration of nitriles when bound to $(NH_3)_5M^{3+}$ (M = Co(III), Rh(III), Ru(III)), although metal ions such as Ru(II) (which are strongly metal-to-ligand π -bonding) have little influence on this reactivity.¹ The susceptibility of coordinated nitriles to attack by other nucleophiles (e.g. CN^{-} , N_{3}^{-} , and CO_{3}^{2-})²⁻⁵ prompted the present work, where we have used liquid NH₃ to aminate nitriles, including a substituted cyanamide, providing a synthesis of metal complexes of unidentate amidines and of a (substituted) guanidine. We were particularly interested in comparing the acid/base properties and solution structures of such complexes with those of their isoelectronic Nand O-bonded urea and amide complexes.⁶ This study may be relevant to the in vivo coordination chemistry of arginine residues, which contain protonated guanidine derivatives as potential ligands for bio-constituent metal ions.

Results and Discussion

The series of yellow nitrile complexes [(NH₃)₅Co-NCR]³⁺ (R = NH_2 , $N(CH_3)_2$, CH_3 , CH_2 =CH, C_6H_5 , $o-NO_2-C_6H_4$, p-F- C_6H_4) were prepared by the reaction of [(NH₃)₅CoOSO₂C- $F_{3}](CF_{3}SO_{3})_{2}$ with the appropriate nitrile, either as the neat compound or in acetone.^{2,7} When dissolved in NH₃(1), they

- Zanella, A. W.; Ford, P. C. Inorg. Chem. 1975, 14, 46. Dixon, N. E.; Fairlie, D. P.; Jackson, W. G.; Sargeson, A. M. Inorg. (2)Chem. 1983, 22, 4038.
- Butler, D. G.; Creaser, I. I.; Dyke, S. F.; Sargeson, A. M. Acta Chem. Scand., Ser. A 1978, 32, 789.
 Creaser, I. I.; Harrowfield, J. M.; Keene, F. R.; Sargeson, A. M. J. Am.
- Chem. Soc. 1981, 103, 3559.
- Chem. Soc. 1961, 105, 3535.
 Ellis, W. R., Jr.; Purcell, W. L. Inorg. Chem. 1982, 21, 834.
 (a) Fairlie, D. P. Ph.D. Dissertation, University of New South Wales, 1983.
 (b) Fairlie, D. P.; Jackson, W. G. Inorg. Chim. Acta 1988, 150, 81.
 (c) Fairlie, D. P.; Jackson, W. G. Inorg. Chem., in press.
- (7) Fairlie, D. P.; Jackson, W. G. Results to be submitted for publication.

Figure 1. 60-MHz (35 °C, bottom) and 300-MHz (20 °C, top) ¹H NMR spectra of [(NH₃)₅CoNH=C(NH₂)CH₃]³⁺ in Me₂SO showing the collapse of the exo-NH₂ signal at the higher field strength. These spectra were run with the same sample but are not on the same scale; the asterisk represents residual Me_2SO-d_5 in the solvent.

undergo a slow reaction (minutes at -76 °C), evidenced by the distinct color change from yellow to burgundy $(R = N(CH_3)_2)$ or yellow-orange; the $R = NH_2$ derivative merely deprotonates at the exo NH₂ and does not aminate. The solvent was evaporated, giving quantitative yields of amination products, which were recrystallized (water) and characterized by microanalyses and NMR (¹H, ¹³C) and absorption spectra.

Amidines. The aqueous recrystallization of products obtained from either alkyl or aryl nitrile complexes in NH₃, with use of either Tris/NaClO₄ (pH ca. 9) or HClO₄, gave yellow-orange crystals with identical properties (for a particular nitrile). Each material gave the correct analysis for addition of 1 mol of NH₃, $[(NH_3)_5 CoNCRNH_3](ClO_4)_3 \cdot xH_2O$, and the cation-exchange behavior (Sephadex C25 resin) indicated a 3+ ion. The 60-MHz ¹H NMR spectrum of the prototype [(NH₃)₅Co--NH=-C-(NH₂)CH₃]³⁺ in Me₂SO-d₆ (Figure 1, bottom) shows coincident cis- and trans-NH₃ signals (δ 3.26 ppm, 15 H), not uncommon for CoN₆ species,⁶ lattice water (δ 3.42 ppm, 4 H), the methyl signal (δ 2.12 ppm, 3 H), and broad signals at δ 6.68 (2 H) and 5.39 (1 H) ppm, typical⁸ of imine (NH=C) protons. None of these signals corresponds to residual free NH_3 or NH_4^+ or unreacted nitrile complex (δ 3.70 ppm, cis NH₃; δ 3.33 ppm, trans NH_3 ; δ 2.60 ppm, CH_3). These data allow formulation of the product as [(NH₃)₅Co-NH=C(NH₂)CH₃](ClO₄)₃·2H₂O, and similar considerations apply to the other amidine complexes (Table I). The ¹³C NMR data confirmed the presence of the amidine ligands and the purity of the complexes (Table II).

These results indicate that at least up to pH 10 the amidine ligands are uncharged, and the complexes are stable in neutral or acid solution for many hours, although slow aquation (amidine release) ultimately occurs ($t_{1/2} > 10 \text{ h}$). There seems to be no hydrolysis of the ligand to produce (initially) the N-bonded amide, $[(NH_3)_5CoNH=C(OH)R]^{2+}$. Above ca. pH 11, deprotonation can be observed spectrophotometrically, and indeed brown-orange deprotonated forms can be readily crystallized from 0.1 M OH⁻ (although prolonged exposure to strong base (1 M) results in decomposition). These revert to the protonated amidine species

Gainsford, G. J.; Jackson, W. G.; Sargeson, A. M. J. Am. Chem. Soc. (8)1979, 101, 3966 and references contained therein.

Table I. Proton NMR Spectral Data for the Amidine and Guanidine Derivatives [(NH₃)₅Co--NH_mC(NH_n)R]¹⁺ in Me₂SO-d₆

	۵, ppm ⁴					
R	cis NH ₃	trans NH ₃	NH _m	NH ^{b,c}	other ^{b,c}	assignt
			Protonated Sp	becies ^d		
-CH3	3.26	3.26	5.48	ca. 6.8 (2) br	3.42 (2) 2.15 (3)	H₂O [*] CH₁
			5.39 ⁱ	6.68 (2) ⁱ	2.12 (3) ⁱ 3.36 (2)	CH ₃ ⁱ H ₂ O*
\bigcirc	3.38	3.29	5.77	7.30 (2) br	7.57–7.66 (5) m	phenyl
F-O-	3.37	3.28	5.77	7.30 (2) br	7.41-7.69 (5) m	phenyl
	3.36	3.36	6.23	7.58 (2) br	7.78–8.3 (5) m	phenyl
Deprotonated Species ^e						
-CH ₃ °	3.29	3.18	g	g	2.06 (3)	CH3
Ø-	3.47	3.15	8	5.32	7.52-8.00 (5) m	phenyl
-N(CH ₃) ₂ ^f	3.31	3.12		5.67 (2)	2.94 3.40	N-CH3 H2O*

^aShifts downfield from the internal reference TMS. ^bThe number of protons is given in parentheses. ^cbr = very broad; m = multiplet. ^dl = 3, m = 1, n = 2. ^cl = 2, m = 1, n = 1. ^fl = 2, m = 0, n = 2. ^gNot observed (see text). ^hLattice water. ^l60-MHz spectrum at 35 °C; all others 300 MHz at 20 °C.

Table II. Carbon-13 NMR Spectral Data for the Amidine and Guanidine Derivatives $[(NH_3)_5Co-NH_mC(NH_n)R]^{l+}$ in Me₂SO-d₆ at 20 °C

R	N+++C+++N	other ^{c,d}	assignt					
Protonated Species ^b								
–CH₃	105.49	-42.25	CH3					
2_3	105.64	68.81	1					
		65.23	4					
$\underline{\Theta}$		62.15 (2)						
		60.86 (2)						
2 3	104.54	97.44 d [250]	1					
F- ¹ ⟨ᢕ⟩⁴		65.26 d [3]	4					
		63.56 (2) d [9]	3					
NO		49.10 (2) d [22]	2					
2 3 102	103.25	78.52	3					
1 ()) ▲		08.40	1					
<u> </u>		64 86	6					
5 5		58.38	١					
		57.21	} 4, 5					
Deprotonated Species								
−CH₃ '	105.61	-41.88	CH3					
NO2	105.61	79.13	3					
<u>ک</u>		67.89	1					
1(O)-		62.63)					
5 6		62.58	2, 4, 5, 6					
		5/.98] , , , , , , ,					
-N(CH_)	95.98	22.28 -27 77	, N-CH					
	10.00	_ ,,,,,	1.0113					

^aShifts downfield from the internal reference dioxane (δ 66.26 ppm vs TMS). ^bl = 3, m = 1, n = 2. ^cThe number of carbons in parentheses. ^dd = doublet; the C-F coupling constant J (in Hz) is given in brackets. ^el = 2, m = 1, n = 1. ^fl = 2, m = 0, n = 2.

in acid, confirming the acid/base relationship. The eluted as 2+ ions on Sephadex resin with 0.1 M NaOH as eluant, and the only analyzed derivative corresponded to the expected $[(NH_3)_5CON-H=C(NH)CH_3](ClO_4)_2$ (amidine proton positions inferred—see below).

For complexes of both uncharged and deprotonated amidine there are alternative tautomeric forms. The spectrum shown in Figure 1 (bottom) is consistent with either of the formulations $[(NH_3)_5CoNH=C(NH_2)CH_3]^{3+}$ or $[(NH_3)_5CoNH_2C(=NH)-$ $(CH_3)^{3+}$. The distinction between these tautomers rests with, among other things, the inequivalence of the NH protons. All the imine protons for species 1 are inequivalent, if 1b contributes,

and rapid rotation about the exo-C-NH₂ bond needs to be invoked to accommodate their observed equivalence in the 60-MHz ¹H NMR spectrum. For species 2, protonation at the Co-bonded N has prevented resonance, and the Co-NH₂ protons are equivalent. The issue was resolved by observation at higher field strength (300 MHz) and lower temperature (20 °C), where the NH₂ signal is at the point of collapse into the base line while the other NH proton resonance remains unaffected (Figure 1, top). This result confirms the proton inequivalence and hence structure 1 for the protonated amidine complex (with a nontrivial contribution from 1b but, as argued ahead, not a large contribution). The other amidines behaved similarly (Table I), and these solution structures are consistent with solid-state structures of several chelated amidines (or thioamidine) known crystallography to contain the two protons on the exo-N atom.⁸ The present amidine complexes are the first simple unidentate cobalt(III) complexes of this kind.

Although the crystalline solids $[(NH_3)_5CoNH=C(NH_2)R]$ -(ClO₄)₃ and $[(NH_3)_5CoNH=C(NH)R](CoO_4)_2$ are visually quite distinct, the visible absorption spectrum of $[(NH_3)_5CoNH=C(NH_2)CH_3]^{3+}$ (ϵ_{484} 77.5) did not change substantially on deprotonation in 0.1 M OH⁻ (ϵ_{485} , 83). This is consistent with the removal of a proton remote from the chromophore, without significant electron reorganization of the resultant ligand (as found with acid/base equilibria of N-bonded amides):⁶

$$L_{5}Co-NH=C < R^{NH_{2}} \xrightarrow{OH^{-}} L_{5}Co-NH=C < R^{NH}$$

Thus, the deprotonated amidines may be formulated as $[(NH_3)_5CoNH=C(NH)R]^{2+}$ rather than $[(NH_3)_5CoN=C (NH_2)CH_3]^{2+}$. Consistent with this formulation, the deprotonated complex $[(NH_3)_5CoNH=C(NH)(C_6H_4NO_2)]^{2+}$ showed a single amidine NH resonance that was integrated as one proton (δ 5.32); the other NH proton was not observed. The chemical shift for this proton was similar to that found (δ 5.33) for the exo-N center of the chelated amidine of known⁸ structure (solid state)

For the [(NH₃)₅CoNH=C(NH)CH₃]²⁺ complex, neither NH proton was observed. This can be understood if these protons on the basic N centers undergo (on the NMR time scale) exchange with trace water present in the Me₂SO solvent. Such a phenomenon has been observed previously for [(NH₃)₅CoNC(NH)]²⁺ [(NH₃)₅CoOH]²⁺, and [(NH₃)₅CoNHSO₃]⁺, for example,⁶ and each of the exchanging protons in these molecules is less basic than the exo NH of $[(NH_3)_5CoNH=C(NH)R]^{2+}$. We have even observed⁶ selective exchange broadening of one of the two carboxamide NH protons ($pK_b \approx 3!$) of [(NH₃)₅CoOC(NH₂)CH₃]³⁺ and [(NH₃)₅CoOC(NH₂)H]³⁺, attributable to the presence of trace water.

Acidity arguments can be used to support the structural assignments of the amidine complexes. We have shown previously that a complex such as [(NH₃)₅CoNH₂COR]³⁺ will exist in acid solution as its least acidic form.⁶ Thus, for N-bonded amides, the preferred tautomer is $[(NH_3)_5CoNH=C(OH)R]^{3+}$ $(pK'_a \approx$ 3), while for N-bonded useas the structure is $[(NH_3)_5CoNH_2 -$ CO-NR'R]³⁺ ($pK'_a \approx 3$).^{2,6} These results indicate a pK'_a value of 3 or less for the structure [(NH₃)₅CoNH₂COR]³⁺. Hence, if $[(NH_3)_5CoNH_2C(=NH)R]^{3+}$ is considered isoelectronic with $[(NH_3)_5CoNH_2C(=O)R]^{3+}$, then it might also be acidic (pK'_a) \leq 3). Since the observed pK'_a > 10, the preferred structure is more likely [(NH₃)₅CoNH==C(NH₂)R]³⁺, in agreement with the conclusion earlier. When we extend this analogy, the assignment is also in accord with known acidities⁶ of [(NH₃)₅Co-OC- $(NH_2)R]^{3+}$ (pK'_a \approx 11), which are isoelectronic with $[(NH_3)_5CoNH=C(NH_2)R]^{3+}$.

The acetamidinium ion has a reported⁹ pK'_a value of 12.4, acetamidine itself probably has $pK'_a \gg 16$, and its Co(III) complex has a pK' value of ca. 11. This enhancement ($\geq 10^5$) in acidity on coordination to Co(III) is usual, although the magnitude is usually less than for binding to H⁺. Enhancements for organic molecules bonded to (NH₃)₅Co^{III} range enormously, from about 10 to about 10¹³.10

Substituted Guanidine. The unsubstituted cyanamide complex¹¹ $[(NH_3)_5CoNCNH_2]^{3+}$ instantly deprotonates in liquid NH₃ to yield the unreactive ion $[(NH_3)_5CoNCNH]^{2+}$; this is similar to the situation in aqueous base.¹¹ However N,N-dimethyl substitution eliminates the possibility of deprotonation, and $[(NH_3)_5 CoNCN(CH_3)_2](CF_3SO_3)_3^2$ quickly (but not instantaneously) changes color from yellow to deep burgundy in liquid NH₃, indicative of amination to yield the deprotonated substitutedguanidine species "[(NH₃)₅CoNH=C(NH)N(CH₃)₂]²⁺". Evaporation of the ammonia left a deposit of gleaming burgundy crystals of the ditriflate salt. This deprotonated form was obtained from basic, neutral, and even acid solution as both the ditriflate and diperchlorate salts. It is very stable in Me₂SO, H₂O, or dilute base, but in strong acid the ligand is rapidly lost (vide infra).

The low pK'_a value for $[(NH_3)_5CoNH=C(NH_2)N(CH_3)_2]^{3+}$ contrasts sharply with that of the amidines, where the corre-

Balahura, R. J.; Jordan, R. B. J. Am. Chem. Soc. 1971, 93, 625. Perrin, D. D.; Dempsey, B. Buffers for pH and Metal Ion Control; Chapman and Hall: New York, 1983; p 163. (12)

sponding $pK'_a \approx 11$. This is not the only difference. The ¹H NMR spectrum of the isolated deprotonated species "[(NH₃)₅CoNH=C(NH)N(CH₃)₂]²⁺" exhibits the cis- and trans-NH₃ signals characteristic of an N-bonded pentaammine complex (Table I), but it shows only one NH signal in the imine region, which gives an integration for two protons and which is consistent with the alternative structure [(NH₃)₅CoNC(NH₂)N- $(CH_3)_2$ ²⁺. Also, the visible spectrum shows $\epsilon_{511}(max)$ 102, consistent with the Co-N=C arrangement as argued previously⁶ and again contrasting with that of the deprotonated amidine $[(NH_3)_5CoNH=C(NH)CH_3]^{2+}$ ($\epsilon_{485}(max)$ 83).

In acid solution free dimethylguanidinium ion and $[(NH_3)_5CoOH_2]^{3+}$ arise from the hydrolysis of $[(NH_3)_5CoNH=C(NH_2)N(CH_3)_2]^{3+}$, at a rate linear in $[H^+]$ for a 2-fold variation in the range 0.12–0.24 M ($\mu = 1.0$ M; NaClO₄); in 0.12 M HClO₄, $k(obsd) = (2.77 \pm 0.03) \times 10^{-2} s^{-1}$, and in 0.24 M HClO₄, $k(obsd) = (6.01 \pm 0.24) \times 10^{-2} s^{-1}$. Clearly the complex is not appreciably protonated in this pH region (pK'_a) \ll 1), and the protonated form is obviously very reactive ($t_{1/2} \leq$ 1 s). This reactivity contrasts sharply with the amidine chemistry.

Free dimethylguanidine, like the parent guanidine, is a very strong base in water: $pK'_b \approx 0.4$; i.e., the protonated forms are weak acids $(pK'_a \approx 13.6)$.¹¹ The ability of the free base to *lose* a proton is unknown, but guanidine itself does not self-deprotonate to become zwitterionic and must therefore be an extremely weak acid ($pK'_a \gg 16$). However, on coordination to Co(III), the neutral ligand becomes a very strong acid $(pK'_a < 1)$ and the enhancement in acidity is $\gg 10^{15!}$ Large enhancements (<10¹⁰) in acidity for ligands N-bonded to cobalt(III) such as ureas,² amides,^{1,13} sulfamate,¹⁴ sulfonamide,¹⁵ cyanamides,¹¹ sulfinamides,⁶ and carbamates^{6,16} are known, but the enhancement here is possibly the greatest reported to date. Factors influencing the acidity of guanidine are not necessarily related to those determining its basicity. It is a good base because its protonated form is flat and is stabilized by π -conjugation:

The sensitivity of the acidity of amidinium and especially guanidinium ions to the nature of the electron-withdrawing substituents has been noted and discussed by Charton.¹⁷ However, it is not clear that such substituents (CN⁻, for example) would enhance the acidity of the neutral molecules similarly, although $(NH_3)_5Co$ certainly does for at least one guanidine derivative.

Platinum(II) complexes of substituted guanidines have been reported recently,¹⁸ and the ligands were suggested to be in the uncharged rather than deprotonated form although ligand deprotonation and tautomerism were not considered. Platinum(II) complexes of amidines (not unidentate) have been reported,¹⁹ and it was believed (but not proven) that the amidine arose by addition of amine to a coordinated nitrile. Also, C- and N-bonded N,-N'-substituted formamidine complexes of Co(III) have been described.20

Finally, the extreme reactivity of the protonated guanidine species $[(NH_3)_5Co-NH=C(NH_2)N(CH_3)_2]^{3+}$ ($t_{1/2} < 1$ s) is in

- (13) Buckingham, D. A.; Keene, F. R.; Sargeson, A. M. J. Am. Chem. Soc. 1973, 95, 5649
- Po, L. L.; Jordan, R. B. Inorg. Chem. 1968, 7, 526
- (15) Laird, J. L.; Jordan, R. B. Inorg. Chem. 1982, 21, 855.
 (16) Buckingham, D. A.; Francis, D. J.; Sargeson, A. M. Inorg. Chem. 1974, 13, 2630.
- (17) Charton, M. J. Org. Chem. 1965, 30, 969.
 (18) Ratilla, E. M. A.; Kostič, N. M. J. Am. Chem. Soc. 1988, 110, 4427.
 (19) Uguagliati, P.; Belluco, U.; Michelin, R. A.; Guerriero, P. Inorg. Chim.
- Acta 1984, 81, 61.
- (20)Doonan, D. J.; Parks, J. E.; Balch, A. L. J. Am. Chem. Soc. 1976, 98, 2129.

Sidgwick, N. V. The Organic Chemistry of Nitrogen, 3rd ed.; Clarendon (9)

Press: Oxford, England, 1966. (a) Balahura, R. J.; Jordan, R. B. J. Am. Chem. Soc. 1970, 92, 1533. (b) See ref 10, 13, and 14 and references therein. (10)

keeping with the reactivities observed for other N-bonded complexes of this kind, $[(NH_3)_5C_0NH_2SO_2NH_2]^{3+}$ $[(NH_3)_5CoNH_2SOCH_3]^{3+}$, $[(NH_3)_5CoNH_2CONR_2]^{3+}$, and $[(NH_3)_5CoNH_2CO(OC_2H_5)]^{3+}$, all of which have a very acidic proton $(pK'_a \leq 3)$ on the nitrogen bound to Co.⁶ The amidine complexes, on the other hand, are very much less reactive $(t_{1/2})$ > 10 h) and less acidic. The apparent correlation between reactivity and acidity breaks down with complexes such as amide-N species, which, although quite acidic, are not very reactive.⁶ However, we have argued that the protonated amidine and amide complexes are each of the Co-NH= kind, and all these results can be rationalized if the Co-NH2R bond (electron-withdrawing R) is appreciably weaker than the Co-NH= bond and the reactions have an appreciable dissociative component.

Experimental Section

Electronic spectra were measured by Cary 210 and Cary 118C instruments, thermostated to 25.0 ± 0.1 °C by water circulation from Lauda baths. Details of our kinetic techniques and data analysis are described elsewhere.^{2,6} The hydrolysis reactions were sufficiently slow to follow in situ in a cell thermostated within the spectrophotometer and were monitored at 520 nm by using 0.1-0.32 M HClO₄ at constant ionic strength (1.17 M; NaClO₄). Reported specific rates are the means of quadruplicate determinations. The chromatography (below) and final spectra were consistent with 100% [(NH₃)₅CoOH₂]³⁺ as product (ϵ_{490} 47.7). NMR spectra were recorded on either Varian T60 (¹H; probe temperature 30 °C) or Varian XL-300 (13C, 1H; probe temperature 20 °C) instruments for Me₂SO- d_6 solutions using dioxane (¹³C) or tetramethylsilane (1H) as the internal references. Chemical shifts are reported as positive downfield from TMS (¹H) or dioxane (¹³C). Chemicals were AnalaR grade or the equivalent. Cation-exchange chromatography was carried out with use of SP Sephadex C25 (Na⁺ form) cation resin and 0.23 M Na⁺ eluant (pH 7; 0.01 M H₂PO₄⁻, 0.01 M HPO₄²⁻, 0.2 M Cl⁻). Salts of the nitrile complex ions [(NH₃)₅CoNCR]³⁺ were obtained from $[(NH_3)_5CoOSO_2CF_3](CF_3SO_3)_2^{11}$ as perchlorate or trifluoromethane-sulfonate salts as described elsewhere.⁷

 $[(NH_3)_5C_0NH = C(NH_2)R](ClO_4)_3$. $[(NH_3)_5C_0NCR](ClO_4)_3$ (2.0 g) was dissolved in NH₃(l) (ca. 50 mL) in an open but narrow-necked flask. Within minutes the solution changed color from yellow to orange-yellow. The ammonia was allowed to evaporate and the treatment with NH₃(l) repeated. The residue was recrystallized from a minimum volume of water with use of either aqueous NaClO₄ or HClO₄ as precipitant. Samples contaminated with a small amount of [(NH₃)₅CoOH₂](ClO₄)₃ were recrystallized from water/NaClO₄ containing Tris (0.02 M), which kept the aqua complex in solution as its more soluble hydroxo form. Some of the products proved to be hydrates, as shown by $^1\mathrm{H}$ NMR spectroscopy in dry Me₂SO, but lattice water was removed under vacuum over P2O5. Anal. Calcd for [(NH3)5CoNH=C(NH2)CH3](ClO4)3: C, 4.80; H, 4.20; N, 19.58; Cl, 21.28. Found: C, 4.60; H, 4.36; N, 19.30; Cl, 21.13. Visible spectrum: ϵ_{484} (max) 77.5 (0.01 M HClO₄).

 $[(NH_3)_5C_0NH \rightarrow C(NH)R](ClO_4)_2$. Only the methyl and o-nitrophenyl derivatives were characterized. To a thin slurry of the protonated form in water was added 1 M NaOH dropwise until it just dissolved. (N.B. Too much OH⁻ can lead to decomposition.) The solution, which had darkened, was filtered and treated with a 1/5 volume of saturated aqueous NaClO₄. Crystals deposited readily, and after they were cooled at 0 °C for 30 min, these were collected, washed with ethanol and ether, and dried over P₂O₅ under vacuum. Visible spectrum: $\epsilon_{4R5}(max)$ 83.0 (R = CH₃, 0.1 M NaOH).

[(NH₃)₅CoN=C(NH₂)N(CH₃)₂](ClO₄)₂·H₂O and [(NH₃)₅CoN=C(N-H₂)N(CH₃)₂](CF₃SO₃)₂·H₂O. This material was prepared exactly as described for the amidines except one treatment with NH₃(1) was sufficient, and the product was recrystallized from a minimum volume of aqueous Tris (0.02 M) with either aqueous NaCF₃SO₃ or NaClO₄ as the precipitant to afford deep burgundy crystals, which were air dried (each was a monohydrate; ¹H NMR spectroscopy in dry Me₂SO). Visible spectrum: $\epsilon_{511}(max)$ 102.0 (0.1 \dot{M} Tris).

Attempts to prepare the methyl amidine and dimethylguanidine complexes directly from the free ligands with use of standard synthetic practices yielded only [(NH₃)₅CoOH](ClO₄)₂.

Acknowledgment. This work was supported by the Australian Research Grants Scheme.

Registry No. [(NH₃)₅CoNCN(CH₃)₂](ClO₄)₃, 123881-63-0; [(N-H₃)₅CoNCCH₃](ClO₄)₃, 15663-50-0; [(NH₃)₅CoNCCH=CH₂](ClO₄)₃, 143

15648-92-7; $[(NH_3)_5CoNCC_6H_3](CIO_4)_3$, 38363-82-5; $[(NH_3)_5CoNCC_6H_4-o-NO_2](CIO_4)_3$, 84935-04-6; $[(NH_3)_5CoNCC_6-H_4-p-F](CIO_4)_3$, 123881-65-2; $[(NH_3)_5CoNH=C(NH_2)N(CH_3)_2](CI-H_4-p-F](CIO_4)_3$, 123881-65-2; $[(NH_3)_5CoNH=C(NH_2)N(CH_3)_2](CI-H_4-p-F)(CIO_4)_3$, 123881-65-2; $[(NH_3)_5CoNH=C(NH_2)N(CH_3)_2](CI-H_4-P)(CIO_4)_3$, 123881-65-2; $[(NH_3)_5CONH=C(NH_2)N(CH_3)_3](CI-H_4-P)(C$ O₄)₃, 123881-67-4; [(NH₃)₅CoNH=C(NH₂)CH₃](ClO₄)₃, 123881-69-6; $[(NH_3)_5C_0NH=C(NH_2)CH=CH_2](ClO_4)_3, 123881-71-0; [(NH_3)_5-C_0NH=C(NH_2)CH=CH_2](ClO_4)_3, 123881-71-0; [(NH_3)_5-C_0NH=C(NH_2)CH=CH_2](ClO_4)_3, 123881-71-0; [(NH_3)_5-C_0NH=C(NH_2)CH=CH_2](ClO_4)_3, 123881-71-0; [(NH_3)_5-C_0NH=C(NH_2)CH=CH_2](ClO_4)_3, 123881-71-0; [(NH_3)_5-C_0NH=C(NH_2)CH=CH_2](ClO_4)_3, 123881-71-0; [(NH_3)_5-C_0NH=C(NH_2)CH=CH_2](ClO_4)_3, 123881-71-0; [(NH_3)_5-C_0NH=CH_2](ClO_4)_3, 123821-71-0; [(NH_3)_5-C_0NH=CH_2](ClO_4)(NH_3)_5-C_0NH=CH_2](ClO_4)(NH_3)_5-C_0NH=CH_2](ClO_4)(NH_3)(NH_3)(NH_3)(NH_3)(NH_3)(NH_3)(NH_3)(NH_3)(NH_3)(NH_3)(NH_3)(NH_3)(NH_3)(NH_3)(NH_3)(NH$ $CoNH = C(NH_2)C_6H_5](ClO_4)_3, 123881-73-2; [(NH_3)_5CoNH = C (NH_2)C_6H_4-o-NO_2](ClO_4)_3$, 123881-75-4; $[(NH_3)_5CoNH=C-(NH_2)C_6H_4-p-F](ClO_4)_3$, 123881-77-6; $[(NH_3)_5CoNH=C(NH)C-(NH_2)C_6H_4-p-F](ClO_4)_3$, 123881-77-6; $[(NH_3)_5CoNH=C(NH_2)C_6H_4-p-F](ClO_4)_3$, 123881-77-6; $[(NH_3)_5CoNH=C(NH_2)C-(NH_2)C-F](ClO_4)_3$, 123881-77-6; $[(NH_3)_5CoNH=C(NH_2)C-F](ClO_4)_3$, 123881-77-6](NH_2)C-F](ClO_4)_3, 123881-77-6](NH_2)C-F](NH_2 $H_3](ClO_4)_2$, 123881-79-8; [(NH₃)₅CoNH=C(NH)C₆H₄-o-NO₂]- $(ClO_4)_2$, 123881-81-2; $[(NH_3)_5CoN=C(NH_2)N(CH_3)_2](ClO_4)_2$, 123881-83-4; $[(NH_3)_5CoN=C(NH_2)N(CH_3)_2](CF_3SO_3)_2$, 123881-84-5; NH₃, 7664-41-7; NCN(CH₂), 1467-79-4; NCCH₃, 75-05-8; NCCH= CH₂, 107-13-1; NCC₆H₅, 100-47-0; NCC₆H₄-o-NO₂, 612-24-8; NCC₆H₄-p-F, 1194-02-1; NH=C(NH₂)CH₃, 143-37-3; NH=C- $(NH_2)C_6H_4-o-NO_2$, 88718-94-9; $NH=C(NH_2)N(CH_3)_2$, 6145-42-2.

> Contribution from the Departments of Chemistry, University of Modena, Modena, Italy, and University of Florence, Florence, Italy

Synthesis, Crystal and Molecular Structure, and Magnetic Properties of Bis[tris(µ-3,5-diamino-1,2,4-triazole-N¹,N²)tris(thiocyanato-N)nickel(II)]nickel(II) Hexahydrate

L. Antolini,^{1a} A. C. Fabretti,^{*,1a} D. Gatteschi,^{*,1b} A. Giusti,^{1a} and R. Sessoli^{1b}

Received March 15, 1989

1,2,4-Triazoles have been actively investigated as versatile ligands that can yield polynuclear metal complexes with interesting magnetic properties.²⁻⁷ In particular, it was found that three 1,2,4-triazoles can bridge between two metal ions, yielding dimeric and trinuclear species. 6,7 In order to prevent such a coordination and to favor the formation of thiocyanate bridges, Reedijk et al.⁸ successfully used the strategy to employ bulky 3,5-disubstituted 1,2,4-triazoles. In particular, they isolated a compound of formula $Ni_3(detrH)_6(NCS)_6 \cdot 2H_2O$ (detrH = 3,5-diethyl-1,2,4-triazole), in which the central and terminal ions are bridged by two triazoles and one thiocyanate ion, while the terminal nickel ions complete their octahedral coordination with one triazole and two thiocyanate atoms. We have now found that using 3,5-diamino-1,2,4-triazole, guanazole, as a ligand yields a compound of formula Ni₃(guan $azole_{6}(NCS)_{6}$ $\cdot 6H_{2}O$, which, notwithstanding the close similarity in the formula to $Ni_3(detrH)_6(NCS)_6 \cdot 2H_2O$, has three bridging guanazoles between the internal and terminal nickel ions, and we report here its crystal structure and magnetic properties in order to compare them to those of $Ni_3(detrH)_6(NCS)_6\cdot 2H_2O$.

Experimental Section

Materials. Nickel(II) thiocyanate was prepared as reported in the literature.9 3,5-Diamino-1,2,4-triazole (guanazole) was used as the commercially available compound.

Synthesis. The metal salt (1 mmol) dissolved in water (20 mL) was added to the ligand (3 mmol) dissolved in water (6 mL). A very slow evaporation gives blue crystals suitable for X-ray data collection.

- (a) University of Modena. (b) University of Florence. (1)
- (2)
- (3)
- Jarvis, J. A. Acta Crystallogr. 1962, 15, 964. Inoue, M.; Kubo, M. Coord. Chem. Rev. 1976, 21, 1. Engelfriet, D. W. Ph.D. Thesis, State University Leiden, 1979. En-gelfriet, D. W.; Groeneveld, W. L.; Groenendijk, H. A.; Smit, J. J.; Nap, (4) . M. Z. Naturforsch., A 1980, 35A, 115.
- (5) Reimann, C. W.; Zocchi, M. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1971, B27, 682.
- Vos, G.; le Febre, R. A.; de Graff, R. A. G.; Haasnoot, J. G.; Reedijk, J. J. Am. Chem. Soc. 1983, 105, 1682.
- (7) Prins, R.; de Graaff, R. A. G.; Haasnoot, J. G.; Vader, C.; Reedijk, J. J. Chem. Soc., Chem. Commun. 1986, 1430.
- van Albada, G. A.; de Graaff, R. A. G.; Haasnoot, J. G.; Reedijk, J. Inorg. Chem. 1984, 23, 1404.
- Handbook of Preparative Inorganic Chemistry; Brauer, G., Ed.; Aca-(9) demic: New York, 1965; p 1558.

Dixon, N. E.; Jackson, W. G.; Lancaster, M. J.; Lawrance, G. A.; (21)Sargeson, A. M. Inorg. Chem. 1981, 20, 470.